全球知名的
超细粉体解决方案提供商
专注于超细超纯粉碎与分级研究、粉体形状控制与选择性粉碎、粉体表面改性、和粉体工程设备的系统集成
粉体百科丨硅基负极材料的改性方法——针式粉碎机,针盘磨
随着新能源技术的发展,传统锂离子电池的石墨负极将逐渐无法满足要求,高能量密度负极材料成为企业追逐的新热点。硅基负极材料由于丰富的储量和超高的理论比容量正逐渐成为电池企业和锂电材料商改善负极的最优先选择,是最具潜力的下一代锂离子电池负极材料之一。
但是硅基负极材料存在很多问题:
(1)硅材料粉化,体积变化过程中产生的应力,会使硅颗粒相互挤压、粉化,进而失去电接触导致容量迅速衰减。
(2)电极结构破坏,对于硅材料来说,传统的粘结剂(如PVDF)无法承受其巨大的体积变化,使得活性材料从集流体上脱落,导致电极结构被破坏,电池循环稳定性很差。
(3)不稳定的SEI膜,体积效应会使SEI膜不稳定,体积效应还会使得硅表面SEI膜在充放电过程性中不断的破裂、再生长,导致库伦效率降低,电极的电子导电性变差,电池内阻增加等。
与碳材料复合
由于碳材料具有一定的柔韧性和电子导电性,因此常用来与硅材料进行复合来优化其性能,研究发现添加适量的碳材料不仅可以为锂离子提供传输的通道,而且可以增加锂离子的嵌入点位。此外,硅的嵌锂电位与碳类材料相近,通过与硅碳材料进行复合,可以很好地缓解硅的体积效应,提高硅材料的电化学稳定性。
1石墨
在硅负极中添加少量石墨可以有效地改善电极的电化学性能。研究发现在石墨片及插入片层结构之间的硅颗粒组成的复合结构中,石墨不仅可以作为稳定SEI层的有效基底,还可以防止硅颗粒的团聚,促进阳极的电子输运。
合金化
硅可以和很多金属元素形成金属硅化物,这些化合物作为锂离子电池负极材料时,储锂容量普遍低于单质Si,但体积变化更小,有利于材料在脱嵌锂过程中保持结构稳定,从而获得优于单质Si的循环稳定性能。另外,Si合金往往具有更高的电导率,有利于改善Si基负极材料的电化学性能。硅与金属复合形成的金属硅化物存在两种情况:
一是金属元素在整个充放电过程中不具备脱嵌锂活性,仅起支撑结构、缓解体积膨胀和提高材料电导率的作用,此类金属称之为惰性金属;
二是金属本身具有脱嵌锂活性,但是与硅充放电电位不同,因此它们的复合使得材料的体积膨胀在不同电位下进行,缓解由此产生的机械内应力,从而提高整个材料的循环稳定性,此类金属称之为活性金属。另外,还有一些多元金属-Si合金负极材料,其中部分金属可以分别与S形成合金,部分金属元素之间也可以形成合金,作为缓冲基底。
山东埃尔派采用目前国际先进的设计理念和制作工艺,并结合公司多年工程经验,针对市场需求开发的针盘磨,可升级为双动力针盘磨,达到200m/s线速度,获得更大粉碎力。